CORRIGENDA

STANISŁAW LEWANOWICZ, "Recurrence relations for hypergeometric functions of unit argument," *Math. Comp.*, v. 45, 1985, pp. 521–535.

In Eq. (3.1) on page 523, the numerator parameter $2n + \lambda - t + 1$ of the function $_{p+2}F_{p+1}$ should read $2n + \lambda - m - t + 1$.

In Eq. (3.2) (the same page), the parameter $n + 2n + \lambda$ of the function $_{q+4}F_{q+3}$ should read $m + 2n + \lambda$, while the expression $2n + \lambda + q + 2$, being a denominator parameter of this function as well as of the function $_{q+2}F_{q+1}$, should be in both cases replaced by $2n + \lambda + t + 1$.

In Eq. (3.3) (also page 523), $(n - 1 - b_{p+2})$ should read $(n - 1 + b_{p+2})$, and the denominator parameter $n + \lambda - t + 1 + b_{p+2}$ of the function $_{p+4}F_{p+3}$ should read $n + \lambda - t + 1 - b_{p+2}$.

In Eq. (3.4) on page 524, the factor $(2n + \lambda)_{q+2}$ should read $(2n + \lambda)_{t+1}$. The last equation of (3.5) (the same page) should read

$$H_t(n;t) = \frac{(-1)^q (2n+\lambda)_t (n+\beta+1)_t (n+\lambda+t-c_{q+2})}{(n+\lambda)_t (2n+\lambda+t+1)_t (n+c_{q+2})}$$

On page 525, the right-hand member of the inequality in line 12 from above should read -1.

On page 526, line 2 from below, the parameter $k - 1 - b_{p+2}$ of the function $_{p+4}F_{p+3}$ should read $k - 1 + b_{p+2}$.

On page 527, line 6 from below, the parameter $k - 1 - b_{p+2}$ of the function $_{p+4}F_{p+3}$ should read $k - 1 + b_{p+2}$.

In the second formula of (3.28), page 529, the expression $\Gamma(m + n + 1 - a_j)$ should read $\Gamma(m + n + 1 + a_j)$.

On page 530, line 5 from below, the parameter $h + \lambda + 1 - a_p$ of the function $_{p+2}F_{p+1}$ should read $n + \lambda + 1 - a_p$.

On page 531, line 3 from below, the paramter $1 + d_j - c_{q+2}$ of the function $_{q+2}F_{q+1}$ should read $1 - d_j + c_{q+2}$.

On page 534, in the first line of Eq. (4.6), the factor (n + a) should read (n + a - 1).

On page 534, in the last displayed formula, $\lambda = \alpha + \beta$ should be replaced by $\lambda := \alpha + \beta + 1$.

STANISŁAW LEWANOWICZ

Institute of Computer Science University of Wrocław 51-151 Wrocław, Poland GRADIMIR V. MILOVANOVIĆ & STAFFAN WRIGGE, "Least squares approximation with constraints," *Math. Comp.*, v. 46, 1986, pp. 551–565.

The formula for $a_{n,k}(0)$ in Theorem 1, p. 554, should be replaced by

$$a_{n,k}(0) = \frac{(-1)^k}{\left(\frac{1}{2}\right)_{k+1}} \sum_{m=0}^n \theta_m(f, T_{2m}) \alpha_{m,k}^{(n)}(0),$$

where $\theta_0 = 1$ and $\theta_m = 2$, when $m \ge 1$.

G. V. MILOVANOVIĆ

Faculty of Electronic Engineering Department of Mathematics University of Niš P. O. Box 73 18 000 Niš, Yugoslavia

F. GRAMAIN & M. WEBER, "Computing an arithmetic constant related to the ring of Gaussian integers," *Math. Comp.*, v. 44, 1985, pp. 241–250.

p. 245, Figure 2 p. 248, l. 20	: :	Turn clockwise through the angle $\pi/2$. Read $\leq \pi/2$ instead of $< \pi/2$.
p. 248, l. 2↑	:	Inside the parentheses insert + $\chi \left(y - \sqrt{r^2 - (x - k)^2} \right)$
		where χ is the characteristic function of Z .
p. 249, l. 19 and 20	:	Instead of $N(r^2)$ read $[N(r^2)]^{1/2}$, twice.

FRANCOIS GRAMAIN

Département de Mathématiques Université P. et M. Curie 4 Place Jussieu 75230 Paris Cedex 05, France